Fisher信息矩阵与Hessian矩阵:区别与联系全解析

news/2025/2/26 17:34:58

Fisher信息矩阵与Hessian矩阵:区别与联系全解析

在统计学和机器学习中,Fisher信息矩阵(FIM)和Hessian矩阵是两个经常出现的概念,它们都与“二阶信息”有关,常用来描述函数的曲率或参数的敏感性。你可能听说过,Fisher信息矩阵可以定义为对数似然函数二阶导数的负期望值,看起来很像Hessian矩阵的某种形式。那么,这两者到底有什么区别,又有哪些联系呢?今天我们就来一探究竟。


Fisher信息矩阵是什么?

Fisher信息矩阵是统计学中的一个核心工具,用来衡量概率分布 ( p ( x ∣ θ ) p(x|\theta) p(xθ) ) 中包含的参数 ( θ \theta θ ) 的信息量。它有两种等价定义:

  1. 基于得分函数(Score Function)
    I ( θ ) i j = E [ ∂ log ⁡ p ( x ∣ θ ) ∂ θ i ∂ log ⁡ p ( x ∣ θ ) ∂ θ j ∣ θ ] I(\theta)_{ij} = E\left[ \frac{\partial \log p(x|\theta)}{\partial \theta_i} \frac{\partial \log p(x|\theta)}{\partial \theta_j} \bigg| \theta \right] I(θ)ij=E[θilogp(xθ)θjlogp(xθ) θ]
    这是得分函数的协方差,反映了参数变化引起的似然波动。

  2. 基于二阶导数
    I ( θ ) i j = − E [ ∂ 2 log ⁡ p ( x ∣ θ ) ∂ θ i ∂ θ j ∣ θ ] I(\theta)_{ij} = -E\left[ \frac{\partial^2 \log p(x|\theta)}{\partial \theta_i \partial \theta_j} \bigg| \theta \right] I(θ)ij=E[θiθj2logp(xθ) θ]
    这是对数似然函数二阶偏导数的负期望值。

这两种定义在正则条件下(比如可微性和积分交换性)是等价的,我们稍后会证明。

通俗理解

Fisher信息矩阵像一个“信息探测器”,告诉你通过数据能了解多少关于 ( θ \theta θ ) 的知识。它是期望值,代表分布的平均特性。


Hessian矩阵是什么?

Hessian矩阵则是一个更广义的概念,出现在数学和优化领域。对于任意函数 ( f ( θ ) f(\theta) f(θ) ),Hessian矩阵 ( H ( θ ) H(\theta) H(θ) ) 定义为:

H ( θ ) i j = ∂ 2 f ( θ ) ∂ θ i ∂ θ j H(\theta)_{ij} = \frac{\partial^2 f(\theta)}{\partial \theta_i \partial \theta_j} H(θ)ij=θiθj2f(θ)

在统计学或机器学习中,如果 ( f ( θ ) = − log ⁡ p ( x ∣ θ ) f(\theta) = -\log p(x|\theta) f(θ)=logp(xθ) )(负对数似然,作为损失函数),Hessian就是:

H ( θ ) i j = − ∂ 2 log ⁡ p ( x ∣ θ ) ∂ θ i ∂ θ j H(\theta)_{ij} = -\frac{\partial^2 \log p(x|\theta)}{\partial \theta_i \partial \theta_j} H(θ)ij=θiθj2logp(xθ)

注意,这里的Hessian是一个具体的数据函数,依赖于观测值 ( x x x )。

通俗理解

Hessian矩阵像一张“曲率地图”,告诉你函数在某一点的凹凸性或变化速度。在优化中(如牛顿法),它直接用来调整步长。


Fisher信息矩阵与Hessian的联系

从定义上看,Fisher信息矩阵和Hessian矩阵似乎很像,尤其是Fisher的二阶导数定义:

I ( θ ) i j = − E [ ∂ 2 log ⁡ p ( x ∣ θ ) ∂ θ i ∂ θ j ∣ θ ] I(\theta)_{ij} = -E\left[ \frac{\partial^2 \log p(x|\theta)}{\partial \theta_i \partial \theta_j} \bigg| \theta \right] I(θ)ij=E[θiθj2logp(xθ) θ]

而Hessian是:

H ( θ ) i j = − ∂ 2 log ⁡ p ( x ∣ θ ) ∂ θ i ∂ θ j H(\theta)_{ij} = -\frac{\partial^2 \log p(x|\theta)}{\partial \theta_i \partial \theta_j} H(θ)ij=θiθj2logp(xθ)

它们的联系显而易见:Fisher信息矩阵是Hessian矩阵在真实参数 ( θ \theta θ ) 下的期望值。换句话说,Fisher取了Hessian的平均,抹去了单个数据的随机性,反映了分布的整体特性。

证明两种定义的等价性

为什么 ( I ( θ ) i j = E [ s i s j ] = − E [ ∂ 2 log ⁡ p ∂ θ i ∂ θ j ] I(\theta)_{ij} = E\left[ s_i s_j \right] = -E\left[ \frac{\partial^2 \log p}{\partial \theta_i \partial \theta_j} \right] I(θ)ij=E[sisj]=E[θiθj2logp] )?我们来推导一下:

得分函数 ( s i = ∂ log ⁡ p ∂ θ i s_i = \frac{\partial \log p}{\partial \theta_i} si=θilogp ),其二阶导数为:

∂ s i ∂ θ j = ∂ 2 log ⁡ p ∂ θ i ∂ θ j \frac{\partial s_i}{\partial \theta_j} = \frac{\partial^2 \log p}{\partial \theta_i \partial \theta_j} θjsi=θiθj2logp

计算得分函数的协方差:

I ( θ ) i j = E [ s i s j ] I(\theta)_{ij} = E[s_i s_j] I(θ)ij=E[sisj]

考虑 ( E [ s i ] = 0 E[s_i] = 0 E[si]=0 )(得分函数期望为零,请参考笔者的另一篇博客:统计学中的得分函数(Score Function)是什么?它和Fisher信息矩阵有什么关系?),我们对 ( s i s_i si ) 求偏导的期望:

E [ ∂ s i ∂ θ j ] = E [ ∂ 2 log ⁡ p ∂ θ i ∂ θ j ] E\left[ \frac{\partial s_i}{\partial \theta_j} \right] = E\left[ \frac{\partial^2 \log p}{\partial \theta_i \partial \theta_j} \right] E[θjsi]=E[θiθj2logp]

另一方面:

∂ s i ∂ θ j = ∂ ∂ θ j ( 1 p ∂ p ∂ θ i ) = − 1 p 2 ∂ p ∂ θ j ∂ p ∂ θ i + 1 p ∂ 2 p ∂ θ i ∂ θ j \frac{\partial s_i}{\partial \theta_j} = \frac{\partial}{\partial \theta_j} \left( \frac{1}{p} \frac{\partial p}{\partial \theta_i} \right) = -\frac{1}{p^2} \frac{\partial p}{\partial \theta_j} \frac{\partial p}{\partial \theta_i} + \frac{1}{p} \frac{\partial^2 p}{\partial \theta_i \partial \theta_j} θjsi=θj(p1θip)=p21θjpθip+p1θiθj2p

= − s i s j + ∂ 2 log ⁡ p ∂ θ i ∂ θ j = -s_i s_j + \frac{\partial^2 \log p}{\partial \theta_i \partial \theta_j} =sisj+θiθj2logp

取期望:

E [ ∂ 2 log ⁡ p ∂ θ i ∂ θ j ] = E [ s i s j ] + E [ ∂ s i ∂ θ j ] E\left[ \frac{\partial^2 \log p}{\partial \theta_i \partial \theta_j} \right] = E[s_i s_j] + E\left[ \frac{\partial s_i}{\partial \theta_j} \right] E[θiθj2logp]=E[sisj]+E[θjsi]

由于 ( E [ s i ] = 0 E[s_i] = 0 E[si]=0 ),且在正则条件下可以交换积分和导数:

E [ ∂ s i ∂ θ j ] = ∂ ∂ θ j E [ s i ] = 0 E\left[ \frac{\partial s_i}{\partial \theta_j} \right] = \frac{\partial}{\partial \theta_j} E[s_i] = 0 E[θjsi]=θjE[si]=0

所以:

E [ ∂ 2 log ⁡ p ∂ θ i ∂ θ j ] = E [ s i s j ] E\left[ \frac{\partial^2 \log p}{\partial \theta_i \partial \theta_j} \right] = E[s_i s_j] E[θiθj2logp]=E[sisj]

取负号:

I ( θ ) i j = E [ s i s j ] = − E [ ∂ 2 log ⁡ p ∂ θ i ∂ θ j ] I(\theta)_{ij} = E[s_i s_j] = -E\left[ \frac{\partial^2 \log p}{\partial \theta_i \partial \theta_j} \right] I(θ)ij=E[sisj]=E[θiθj2logp]

这证明了两种定义的等价性。


Fisher信息矩阵与Hessian的区别

尽管有联系,两者在使用和性质上有显著差别:

1. 定义基础

  • Fisher信息矩阵:基于概率分布 ( p ( x ∣ θ ) p(x|\theta) p(xθ) ),是期望值,反映分布的统计特性。
  • Hessian矩阵:基于具体函数(比如 ( − log ⁡ p ( x ∣ θ ) -\log p(x|\theta) logp(xθ) )),依赖特定数据 ( x x x ),是瞬时值。

2. 随机性

  • Fisher:取了期望,消除了数据的随机波动,是理论上的平均曲率。
  • Hessian:直接计算某次观测的二阶导数,受数据噪声影响,可能不稳定。

3. 应用场景

  • Fisher:用于统计推断,比如Cramér-Rao下界,衡量参数估计的理论精度。
  • Hessian:用于优化算法(如牛顿法),直接处理损失函数的局部曲率。

4. 计算复杂度

  • Fisher:需要知道分布并计算期望,理论上精确但实践中常需近似(如K-FAC)。
  • Hessian:只需对具体数据求二阶导数,但在大规模模型中计算和存储成本高。
举例:正态分布

对于 ( x ∼ N ( μ , σ 2 ) x \sim N(\mu, \sigma^2) xN(μ,σ2) ):

  • Fisher:
    I μ μ = − E [ − 1 σ 2 ] = 1 σ 2 I_{\mu\mu} = -E\left[ -\frac{1}{\sigma^2} \right] = \frac{1}{\sigma^2} Iμμ=E[σ21]=σ21
    (二阶导数为常数,期望不变)

  • Hessian:
    H μ μ = − ∂ 2 log ⁡ p ∂ μ 2 = 1 σ 2 H_{\mu\mu} = -\frac{\partial^2 \log p}{\partial \mu^2} = \frac{1}{\sigma^2} Hμμ=μ22logp=σ21
    (对于单次观测,值固定)

这里两者相等,但如果数据有噪声或分布复杂,Hessian会波动,而Fisher保持稳定。


实际中的联系与应用

1. 大样本近似

在最大似然估计(MLE)中,当样本量很大时,Hessian矩阵的平均值趋近于Fisher信息矩阵

1 n ∑ i = 1 n H ( θ ; x i ) ≈ I ( θ ) \frac{1}{n} \sum_{i=1}^n H(\theta; x_i) \approx I(\theta) n1i=1nH(θ;xi)I(θ)

这为参数估计的协方差提供了近似:( Cov ( θ ^ ) ≈ I ( θ ) − 1 \text{Cov}(\hat{\theta}) \approx I(\theta)^{-1} Cov(θ^)I(θ)1 )。

2. 优化中的融合

  • 牛顿法:直接用Hessian调整步长,但计算昂贵。
  • 自然梯度下降:用Fisher信息代替Hessian,结合统计特性,效率更高。
  • 折中方案:如K-FAC,用Fisher的近似加速Hessian类优化。

3. 参数正交性

Fisher的非对角元素 ( I i j = 0 I_{ij} = 0 Iij=0 ) 表示参数正交,而Hessian的非对角元素反映具体数据的参数耦合。Fisher提供理论指导,Hessian提供实践反馈。


总结

Fisher信息矩阵和Hessian矩阵是一对“亲戚”:Fisher是Hessian的期望版本,前者关注分布的统计信息,后者关注具体数据的曲率。它们在统计推断和优化中各有侧重,但在理论和实践中常常相辅相成。理解它们的区别与联系,能帮助我们在模型设计和训练中更灵活地选择工具——是追求理论精度,还是优化实际收敛?答案就在这两者之中。

后记

2025年2月24日23点00分于上海,在Grok3大模型辅助下完成。


http://www.niftyadmin.cn/n/5868993.html

相关文章

AI 编码 2.0 分析、思考与探索实践:从 Cursor Composer 到 AutoDev Sketch

在周末的公司【AI4SE 效能革命与实践:软件研发的未来已来】直播里,我分享了《AI编码工具 2.0 从 Cursor 到 AutoDev Composer》主题演讲,分享了 AI 编码工具 2.0 的核心、我们的思考、以及我们的 AI 编码工具 2.0 探索实践。 在这篇文章中&am…

docker安装etcd:docker离线安装etcd、docker在线安装etcd、etcd镜像下载、etcd配置详解、etcd常用命令、安装常见问题总结

官方网站 官方网址:etcd 二进制包下载:Install | etcd GitHub社区项目:etcd-io GitHub GitHub社区项目版本历史:Releases etcd-io/etcd GitHub 一、镜像下载 1、在线下载 在一台能连外网的linux上执行docker镜像拉取命令…

【PGCCC】PostgreSQL 的弊端(第一部分):临时表

PostgreSQL 是世界上最强大的数据库系统之一。我一直对它的强大功能充满热情,尤其是它的现代 SQL 语言功能。 然而,这并不意味着一切都很好。有些地方还是很麻烦。新手用户如果不知道这个问题,可能会遇到麻烦,而且我发现这种情况…

【含文档+PPT+源码】基于微信小程序的农产品自主供销商城系统

项目介绍 本课程演示的是一款基于微信小程序的农产品自主供销商城系统,主要针对计算机相关专业的正在做毕设的学生与需要项目实战练习的 Java 学习者。 1.包含:项目源码、项目文档、数据库脚本、软件工具等所有资料 2.带你从零开始部署运行本套系统 3…

基于RISC-V内核完全自主可控国产化MCU芯片

国科安芯MCU芯片采用开放、灵活的RISC-V指令集架构,RISC-V的开源特性不仅大幅降低研发成本,更赋予芯片设计高度定制化能力。例如,国科安芯的AS32S601抗辐照MCU基于32位RV32IMZicsr指令集,主频达180MHz,内置2MB Flash与…

使用 Containerd 通过 HTTP 协议拉取 Harbor 私有镜像仓库的镜像

在 Kubernetes 1.24及以上版本环境中,docker不再被支持,主要使用Containerd 是常用的容器运行。默认情况下,Containerd 使用 HTTPS 协议与镜像仓库通信。然而,在某些场景下(如测试环境或内部网络)&#xff…

【TVM教程】为 NVIDIA GPU 自动调度神经网络

Apache TVM 是一个深度的深度学习编译框架,适用于 CPU、GPU 和各种机器学习加速芯片。更多 TVM 中文文档可访问 →https://tvm.hyper.ai/ 作者:Lianmin Zheng 针对特定设备和工作负载的自动调优对于获得最佳性能至关重要。本文介绍如何使用 auto-sched…

python与C系列语言的差异总结(3)

与其他大部分编程语言不一样,Python使用空白符(whitespace)和缩进来标识代码块。也就是说,循环体、else条件从句之类的构成,都是由空白符加上冒号(:)来确定的。大部分编程语言都是使用某种大括号来标识代码块的。下面的…